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Abstract

An ill-posed linear problem Ax =y in Hilbert space is considered as a
filtering problem AX + Z = Y for Hilbert space valued random elements.
Depending on the models for the signal X and the noise Z, the solutions of
this problem are discussed in the context of cylinder measures on Hilbert
spaces and their radonification by the Abstract Wiener space concept.
Extensions of the solutions to measurable transformations are given

'V .explicitly. The filtering solution is related to the solution of the problem
Ax y obtained by Tichonov's regularization method.
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1. Introduction

Let Hi and H., be real, separable Hilbert spaces and A:H 2-H., be a linear bounded

operator. By Hadamard's definition, a linear problem Ax =y is well-posed if the solution

exists, is unique and depends continuously on the data: otherwise a problem is called ill-

posed.

Examples: 1) Fredholm integral equations of the first kind:

IfQ-cR is a bounded region, kEL- (Q2 ), fE L-(), then

Kfx): k(x,yffydy

is Hilbert-Schmidt in L 2 (Q).

Hence the linear problem Kf= g (gEL 2 (Q) given) is ill-posed.

2) A linear equation Ax y in r may be numerically ill-posed, if

det A < < 1

In the following we will consider such problems from a statistical point of view as

introduced in the work of O.N. Strand and E.R. Westwater [11], J.N. Franklin [2] and A.

Uhlig [131. This point of view is motivated by the following reasons:

Many methods for the calculation of unknown states x in physical or technical problems

do not allow to observe the interesting state x directly, but give an observation y, whose

functional relationship with x may be described by a linear equation Ax = y as above.

Such observations often may be affected with a random additive noise. Also the

unknown state x may depend itself on a random law. Thus a linear inverse problem

Ax =y often is already an approximation for an equation of the form Ax + z = y, where

x,y,z are random elements, i.e. we have a filtering problem, namely to estimate the

unknown state x given a noisy observation y.

Of course, one will need additional information to solve this estimation problem.

assumptions on the laws of the random elements and a loss function to optimize the

estimate. However, the deterministic methods to give an approximate solution for an ill-

posed problem Ax=y in Hilbert space, for instance the Tichonov regularization ( cf.
[12]), also need additional information. The Tichonov regularization, i.e. the solution of

the variational problem IIAx-yl12 + aF(x) = mi!, requires information on the smoothness

of x to choose the regularization parameter a and the regularization functional F.

Z:..
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2

To give estimates of the approximation error, this method also need*; tt know a compact

set containing the solution x.

Considering the problem as a stochastic filtering problem, those assumptiuns are
replaced by statistical assumptions on the signal and the noise.
Let ( FTP) be a probability space, H1 and H., real, separable Hilbert spaces, X an

HI-valued random variable on (QFP), and Y,Z H,-valued random variables resp. . For

a linear bounded operator A:H--H., we consider the estimation problem AX + Z = Y,
i.e. we want to give an estimate x* for X(w) given Y(w) =y.
To make the paper self-contained, in the following we shortly summarize the well-

known solution for finite-dimensional state spaces H1 ,H.. In section 2 we will consider

the problem for infinite-dimensional state spaces.

Finite-dimensional state spaces H, .H2

Notations: i) E(<X,h>)= <x',h >(hEH) for a suitable x'EH;

x' is called the mean E(X) of X.
ii) E(<X-x',h > <X-x',h 2 >) = <Rh1 ,h 2 > (h1 ,h2 EH,) with

R self-adjoint, R--O, and for X centered, (ek) CONS in HI:
di mH

E(11 X 112 <Rek, ek > =Tr. R.Z""k k~
k I

R is called covariance of X.

Assumptions: i) X and Z independent

ii) X centered with covariance R

iii) Z centered with covariance S

We look for a linear least squares estimate Lo:H 2 --,H i.e.

(1) E(IIX-LoYII)= min {E(IIX-LYII): L:H 2 -. H, linear, bounded}

Let Q:H2 ---. H, be the cross-correlation between signal X and observation Y,

...... i.e. <h,Qh2> =E(< X,hj > < Y,h2 >),(h*H, h2H2).

'A*".
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3

Calculating the error covariance:

(2) E(IIX-LYII 2) = Tr. [R + LKL*-LQ*-QL*] =:F(L)

where K is the covariance of Y and L* denotes the adjoint operator of L, we see that F is

a quadratic form on the Hilbert space L(H,,,H) of linear operators from H) into H,

endowed with the Hilbert-Schmidt norm
di mH 2

11L 112= <Lfk fk> ((f CONS in H,)
k, k=k

Choosing L. such that L)K = Q, one obtains FL) -F L,) = Tr. [R-L,,KL,*]

(LEL(H,,,H)).

Thus L0 solves the estimation problem.If X.Z are Gaussian, one explicitly has Q= RA,

K= ARA* +S, and therefore L =RA*(ARA*+S) -" here K ' denotesthe inverse of K if K

is invertible, otherwise K 'means the left-pseudo-inverse (K*K) 'K* of K.

- For a given right side y=Y(w) one thus has as LLS-estimate (linear least squares

estimate)

(3) x* =RA*(ARA* +S) ly = Ly

Remarks

i) If XZ are not centered, x*= E(X)+ L,(v-A(E(X)-E(Z)) is LLS-estimate

ii) If XZ are independent Gaussian with regular covariances, then

LOY = E(XIY), the conditional expectation of X given Y,

and x* is the mean of the conditional distribution of X given Ytw) =y

.iii L0 minimizes the error of linear functionals of the estimate, i.e.

(4) E(<X-LoY,h> 2)=min{E(<X-LY,h> 2) LEL(H,,H)} (hEH 1 )

iv) If A is invertible and S = 0 (no noise), then x* =A ly, the deterministic solution of

the inverse problem, for arbitrary covariance R.

" v) A connection with Tichonov's regularization method is given by the following

observation:

The functional IIAx-y1 2 +o < R Ix.x > attains its minimum at

x*=RA*(ARA*+o 21).1y (cf.[12]).

@.
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4

Thus Tichonov's method with regularization parameter a and regularization functional
<R'.,.> gives the LLS-estimate under the assumptions of a centered signal X with
regular covariance R and a centered white noise Z with covariance oI , I identity

operator on H_

2. LLS-estimates in infinite-dimensional state spaces.

In the following let H and H, be real, separable, infinite-dimensional Hilbert spaces. Of
course, the problem in generalizing the results to infinite-dimensional spaces depends
on the choice of the mathematical model for the signal X and the noise Z. The following
considerations may clear the fundamentals and show the significance of the
development of a finitely additive filtering theory in the work of A.V. Balakrishnan [1
and in a series of papers ofG. Kallianpur and R. Karandikar (cf. [81.

2.1 Gaussian signal and noise with nuclear covariances.

For convenience , let A:H--H, be onto, but not continuously invertible. Let X. Z be
zero-mean Gaussian, independent, with nuclear covariances R and S resp., and

Ker(ARA* + S) = {O}. By £(H,) we denote the Borel measurable subsets of H,.

,-. The problem is again to give an estimate x* given Y(0) = y, where AX + Z = Y.
By assumption, the operator (ARA* +S) has dense range in H.; hence it exists a unique
left-inverse (ARA* + S) I with domain of definition rg(ARA* + S); but it is unbounded as
inverse of a nuclear operator. Moreover, the well-known crucial point is. that

. rg(ARA* + S) is a set of measure zero with respect to the distribution of Y:

(5) POY (rg(ARA* 4 S))= 0

Proof. Denote ARA* +S =K: then rg(K)crg(K ). If (ek) is a CONS of eigenvectors of K
with corresponding eigenvalues (X k), then xE rg(K!) iff(X \ i < x,ek > iI).

But Ai <.,ek > is standard Gaussian on (H,, £(H,),PoY ').hence
ek >2

is PoY - 1 -d.e divergentie PoY -  rR1K)=0=
k1 k

%.

7.:,,
f
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Thus, in this case, the estimate x*=Loy, L0=RA*(ARA*+S) 1 , as given in [2] is

useless, since it works only for observations y, which Poy '- a. s. do never appear.

In the following, it is shown that there exists an extension of LU to an operator L who,-

domain of definition has PoY . measure one, i.e. L is a measurable transformation.
with respect to POY-I

Proposition 1. Let (ek)X be a CONS of eigenvectors of K with corresponding

*-:.' eigenvalues(.k) 1 ( .

Let (r d 1 be a CONS of eigenvectors of R with corresponding

eigenvalues (p,) .

S-Then it holds for every sE rg(K):

X <se>
L I V= <RA*e, r>

Defining L by (6) for all yEH. satisfying

<y><RA*e r >JK2

one obtains:

i) L extends L

ii) L is measurable and poy1 (D(L)) = 1,

where D(L) is the domain of definition of L.

iii) x*:=Ly is the mean of the conditional distribution of X given

yED(L)

Proof. Clearly, L extends Lo, the domain D(L) of L contains D(Lo), and L is £(H,)-

(H ) - measurable as a limit of finite sums of measurable mappings. One has

to show PoY (D(L))= 1
To prove this, the following facts will be used (cf. Gihman-Skorohod [3]):

,. . . ..

% °.
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a) A well-known theorem of Kolmogorov states: if (Qk) are independent, R-
valued r.v. such that E k = 0 (k( N) and

- EI1 12 < ,then - ,k <  c a e
k=1 k=l

b) If( k)j are R-valued such that

'-" ' EV I1<x, then \ lI< <x a e
.- . k 1 k I

c) With the above notions

X- .- < <Y,e >
Y = N_ . < Y,e >e andY

Nare standard Gaussian (i C N)

d) (ARA*+S) e =\e (i)e

e) By d) Ls is transformed to

Ls= <- <Ce ,r > < r

where C: = RIA*(ARA* + S)O; consequently

LY= -  <Ce, r>Y r

2 f) For C in e) it holds 111 s 1, because:

vED(C)=rg(ARA*+S)1 v= ARA*+S)iu for suitable uH.,,

and since S -0
IICV11 2 = hIRtA*ull!s < (ARA* + S)u,u > = I(ARA* + S)JulI2 = Ilv112.

Thus, C has a continuous extension to all of H,,, say Ce, since D(C) is dense in

H2 . Hence, C*=Ce* exists and IIC*fI !5 1; also C** = Ce exists and IIC**II _1.

It holds C* =(ARA* + S)IARi

...?,:

0 "



'"':"Now, set

-. <C r- > ~ -Y

* .

Then for alljE .4, (,j < P, - a. e., i.e.g)

PON, ( J -' < C(-.r >\- < e > < !)

Nowaet,

EY, =0, EY2 2=1 (iE4) and thus

E( <Ce r >Y ,2 <e C*r > - 1rl1-'= I

,, ,,and a proves g.

SFurthermore, for all j E'4 E 1. Namely, define

•I ,

" '° 1= 1 Nae r >

,'.

and observe Y independent and

n

Ec"=2 <Ce r> 2 <
I<-1

Thus, by g), , P - a. e. convergent for n--, and also 2 is a P - a. e. convergent

sequence of r.v. such that

urn -2

Thus by Fatou's lemma,

E<-iminfn E2 =- <eC*r >= 2 llC*r 112 <

Eventually, we obtain

1 LY 11 2= .2

j=1
converges P - a. e., since

- -=Tr.R<-
"= I J=i

and by b),

-2 2<o P - a.e.,i.e. PoY-(D(L))=
-V j=1

.(

'''-*",..""' ',.'"- ,*...". -. r '.. .'..' .,'_" % %4--.
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. : Now the estimate is set x*: = Ly for yE D(L)). To show assertion iii) of the proposition, itis remarked, that (X, Z) is a zero-mean Gaussian random element with values in H1 x H,

and covariance operator
(RO

. S
-< Therefore, by the independence of X and Z,

X,Y)= A 0

and (X,Y) has covariance operator

Consider the error ,: = X - LY.

* - It is not immediate that is Gaussian, since L is unbounded.

Let ,.,((hl, h)):= E,, .exp[i <( ,Y), (hl, h,)>] =

"E X Yexp I i<( = )X, (hh

Ex. expi<Xh>-<LY, h1 > + <Y,h,>]
be the characteristic function of (,Y).
Let L denote the partial sums in the definition of L:
L_, PHIJLOPH,' ,where H =sp{r, r},H,,' = sp{e. e,},and

.PHk J the orth. projection from Hk onto Hk (k = 1. 2 , ij E ").

Then

h) Lij (ARA*+S) PHI RA*PHol

k) LJ AR = PH JR1CPH,'C*RW.

Calculating ' ,.yl denoting analogously the char. function corresponding to L,, one gets
:-:G:'1)

"-i- h lir lim r ) (hI I h,)
., .,*. ( .y (h' h2 -

by continuity of the norm and the exponential function and by Lebesgue's theorem.

•SICI A
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: h.,) E exp i<X, y,( 02b . ' i " A' .Yi l >F -, )L " I h .

( H
AR .-RA-.-S -L,. I hI, hL, I~.fl~

exp -t<(R- P RCP C*RWh h > --2< -RA*- P RA)*P h h >-<(ARA.Sr h
V I If 21

By 1 hone gets

nl qb~ (hl, h,) exp [<(Rh> +

(ARA* +S) h,, h,,>]} =

exp{--< D(h 1 , h).,(h 1 ,h)>} where

D R- RWC**C-R -  0

0 ARA* - S
is again nuclear and non-negativ in H, x H,.

Thus u , Y) is Gaussian in H, x H, zero-mean, with covariance D.

The form of D gives independence of and Y.

Hence , is zero-mean Gaussian with covariance R - R-C**C*R:

Eventually, X = < + LY and the conditional distribution of X given Y = y, y EDILL. is

obtained by

P(XEB I Y = y) = P(c + LY EB I Y = y) = PU(EB - LY I Y = y)

=P( EB-Ly)= P(+ Ly (B) (BE(H)),

i.e. x* = Ly is the mean of the conditional distribution of X given

Y = y, y E D(L), as in the finite dimensional case.

•X*. , ., '... ... .._ - .. - ....- . -. - . . ,..,. -..-.. -.... .. , - .
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Remarks:

i) L is a measurable linear estimator which dominates the class of continuou,

-, linear estimators T:H., - H1 without necessarily being a member of thi

class.

ii) Also in the sense of (4), L gives the best mean square estimate for linear

functionals <X,h> of the signal X (hEH 1 arbitrarily fixed).

iii) If X,Z are not centered, we find analogously to the finite dimensional case

x*=E(X)+L(y-A(E(X))-E(Z)) (yED(L))as

LLS-estimate for x with respect to (1) and (4). But additionally we have to

require AE(X)+ E(Z)E D(L) to insure that the right side above is well defined.

- iv) If the correlation K of Y has a non-trivial null-space, then one considers

H e Ker(K). It holds PoY '(H, E Ker(K)) = 1. Thus, we have a unique left-

inverse for the restriction of K onto H,, and obtain a measurable linear

extension L for L0 , where Lr =Qo(KIH-,e Ker(K)) l , by restricting the

extension procedure in Proposition 1 to those eigenvalues of K which are

greater than zero. Hence, the above results can be transferred also to this

case.

v) Let signal X and noise Z be zero-mean Gaussian with nuclear covariances R

and S resp., but correlated with cross-correlation

Q:H --. H 1 . Ifa joint Gaussian distribution of(X,Z) with correlation

RQ
Q S)

is assumed, then Lo corresponds to
L1 : =(RA* +Q)(ARA* +AQ+Q*A* + S)-.

Again PoYI(D(L,))=O. Analogously to Prop. 1, an extension of the

estimation operator L, to a measurable transformation L is possible under

the additional assumption that rgQcrgR.

Then again the estimation error = X-LY is zero-mean Gaussian, and Lis the

optimal estimation operator with respect to (1) and (4).

04
d'kS2
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- 2.2 A finitely additive cylinder measure as noise modeI

2.2.1 Weak random variables

We make the following assumptions:

i The signal X is zero-mean Gaussian with values in H i and nuclear

covariance R.

ii) The noise Z is a zero-mean Gaussian weak random variable with bounded.
strictly positive covariance S:H, - H_,, i.e. a zero-mean Gaussian cylinder
measure with covariance operator S is associated to Z.

iii The signal and the noise are independent.U

We look again for an estimate of x in the problem Ax + z =y, where A is onto, but not
continuously invertible, and Ker(ARA* + S) = {} for convenience.

As it is shown in [1], the following result holds:

If the class of admissible estimators is restricted to Hilbert-Schmidt
operators in (1) and (4), then Ly: = RA*(ARA* + S)iy is the optimal estimate
for x in the problem Ax + z = y with respect to the modified criteria (1) and (4),

and L. is Hilbert-Schmidt itself.

The proof is the same as in section 1., if the restriction to Hilbert-Schmidt operators as
admissible estimators is made.

I

'' ;.-i:- , ', :i. ., " ?, .:-: :. .,.:- .% -:;- .-;:..''.-*-'.-* p '': '- -. :-'-'-'- :,".c,..:.:.-.-.-:.-.-,
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Remarks:

i) Loy cannot directly be interpreted as mean of the conditional distribution of

X given y, since the 'conditional distribution' of X given an observation.
,*.' which is associated to a cylinder measure on H,, does not exist in the

countably additive sense.

Only for linear functionals of the estimate this term is appropriate in the

sense of modified (4).

ii) The restriction to zero-mean random elements is not essential

(cf. 2.1). The assumption of independence of signal and noise may be replaced
by the assumption that the correlation K =ARA*+ S of the observation is

strictly positive.

iii) If the signal-covariance R is allowed to be non-nuclear, then the error

covariance Tr.(R + LKL*-LQ*-QL*) is not defined
(Q cross-correlation between signal and observation).

-. However, ifK is continuously invertible, then L0: QK- is the best estimator

for linear functionals in the sense of modified (4).
iv) If we assume the signal to be a white noise, i.e. a zero-mean Gaussian weak

. random variable on H with covariance G21, and the noise as well zero-mean

white noise on H, with covariance o2I, then Lay = o0
2A*(oQ2AA* + o2 )'y is the

solution of the Euler equation (A*A + aB)x = A*y (y(H 2 ), where

2
a= andB=I

That means, that the solution of the Tichonov regularization
IIAx-yl2 + aF(x)= min! for the ill-posed linear problem Ax = y is given by our

estimate Loy in the filtering problem Ax+z=y, if the regularization
parameter a and the regularization functional F are chosen to be

2
-V 0

0

and F(x)=llx112 (cf. [12]).

*, - - . . . .
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2.2.2 Radonification of the cylindrical model by the concept of Abstract Wiener Space

In the foregoing section we have seen that the solution of the filtering problem

AX+Z=Y for a noise model, which is only a finitely additive cylinder measure on the

observation space H,, gives an estimate L0 Y. which is optimal for linear functionals of

the signal, i.e. E(<X-LY, h> 2 )=min {E(<X-LY,h> 2 ) : L : H, - Hi Hilbert-Schmidt

operator}. The observation measure Poy ' in this case also is a finitely additive cylinder

measure on H,. In this framework, for instance in [1] the Kalman-Bucy filter equations

are developped as equations on the observation space, related to the finitely additive

cylinder measure poy I. In order to get an interpretation of the estimate as conditional

distribution of X given Y, in the usual countably additive sense, the concept of Abstract

Wiener space is commonly used. This means, that the observation space H, is embedded

*:. into a larger space W in such a way that a radonification of the cylinder measure to a

countably additive probability measure on the Borel sets of W is possible (cf. [4], [9]):
I

SDefinition. (cf. [4])

-' Let H be a real, separable Hilbert space, and W a real Banach space, and p a zero-mean

Gaussian cylinder measure on H.

Let i: H -W be a continuous injection with dense range in W. The triple

6, H, W) is called an Abstract Wiener space, if the norm 11.111 of W is measurable with

respect to H and p in the following sense:

For every c>O there is a finite-dimensional projection P, on H such that for every

finite-dimensional projection P on H orthogonal to P, we have:

p({x E H: I1i(Px)1I >IJ)<C

Examples and further references can be found in [9].
To apply this concept to our filtering problem AX+Z=Y we make again the

assumptions that X is a zero-mean, Gaussian, H -valued random element with nuclear

covariance R, Z is zero-mean Gaussian white noise on H, with covariance I, and

*: independent of X. Then the weak random variable Z defines a zero-mean Gaussian

. cylinder measure v, such that for the corresponding outer measure v* holds the well-

, known fact v*(H 2)=0 (cf. [5]). The cylinder measure v does not have a countably

additive extension to the Borel sets £(H 2 ) of H, since in a certain sense H 2 is too small.

I,

-. '-'i-~. . ~
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Thus, one extends H ):

Definition. Let C:H, - H, be an arbitrary linear operator which is

i) self-adjoint, positive semi-definite

ii) injective

iii) Hilbert-Schmidt

Define <x, y> 1:= <Cx, Cy> (x, y EH,), I1.111 the corresponding norm, and

let W be the completion of H with respect to the norm 11.11

It is shown in (4], that 11.111 is a measurable norm with respect to v, the weak distribution

corresponding to Z. Thus the triple (i, Hq, W), i:H 2 - W the canonical injection, is an
Abstract Wiener space. The Gaussian cylinder measure v induces a Gaussian cylinder

measure vC on the cylinder sets of W by
Svc ({wEW:(w '(w), ...,w n'(w))EB}): = v({hE H,:(w'(ih) ....w,'(ih))EB}) for every choice of~wl',.... wn'W', nE,,,, BE£(Rn).

According to [4] , vC possesses a countably additive extension v c to the

o-algebra generated by the cylinder sets of W. Since H., is separable, this

a-algebra coincides with the Borel-o-algebra on W (cf. [101).

Again, vC. is zero-mean Gaussian.

We denote the correlation operator of this measure vc ' by G1 . For the restriction G IH,

of G1 onto H 2 (identified with the subspace i (H,) in W) we have:

Lemma 1. G11H2 =C 2

.:.1Proof. For h2' h H2, the function <. hi h >1 : W-.R is a cylindrical

function. Hence, by definition of vCC: ' <hh><I, 1 ~h

<hlGlh 2 > 1  <wh > <wh, >dvc (w) <h' > <h h',> dr h)

'A 1 2 2 2W 2 2

<h, C2h > <h, C2h2>dv (h) <C2hl C2h,> =<h i, C2h> I

o- r o , 0. %#1-
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Now, we consider the equation AX+Z=Y. Ike transfer canonically the probability

measure PO(AX) - onto £(W):

p: =Po(AX) -

p':pOi' ,i.e. p'(B) = p ({hEH,:i(h)(B)) (B1,A%)

p' is zero-mean Gaussian and for its correlation operator G ,:W--W holds:

Lemma2. G21H2 =ARA*C2

Proof. For h 1 , h 2 E H,

< lG~h,,>, - J".<w'hI>1<w"h,>I dp'("w)=

I <h,C2hl><hC 2h>dp(h)= <C2h ARA*C 2 h)> =<h ARA-C 2 h,>,

The sum of the Gaussian random variables on W, corresponding to v c and p, has a

measure p' as its distribution. p' is also zero-mean Gaussian and has G3 := G + G., as

correlation operator, due to the assumed independence of v and p and therefore of v

and p'. We now have immediately:

Lemma 3. i) G3 is nuclear

ii) G3 1H2 = (ARA*+I)C 2

iii) p' is the radonification of the cylinder measure poi- , where p

denotes the weak distribution of Y in H2.

For the cross-correlation G4:W-.H between the signal and the observation measure

holds

N . N% 
- ..7~ ~ - CZ:
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Lemma 4. G41H2 =RA*C2

Proof. Forh, cH,, h., (H.,,
<h'G h,,> < h. <h, h><wh,> P,,N tdh~p d %

1' H lXW I

H~ cH
• Hi'~ <h~h ><h' h >~ P.X- dhp~dh'l

h h I > -'-h'>:-h Pc)X- t dhip'dh'; <h V 'RANC-h >

If we summarize now these observations, we can state that the assumptions of 2.2.1 are

satisfied for the transformed model in the larger space W. Analogously to Proposition 1.
we obtain an extended estimation operator L:W-H which is a measurable

transformation i.e. p' (D(L)) = 1. Analogously, Lw gives the mean of the conditional

distribution of X given w(D(L). L is the extension of L,:= G4G where p'(D(L,,) =

p'(rgG,,) = 0 again. L can be given explicitly on the dense subspace rg((ARA* +I)C:) of
- W:

Proposition 2 L is given on rg ((ARA* + I)C2 ) by

L I rgI(ARA*+DC = RA*(ARA*+ I)

Proof. LI rgI(ARA*+I)C21 =G 4 H I o G- IIrgARA*+ IC!
A= *C2((ARA* + C2) I = RA*(ARA* 1) 1

by Lemma 3 and Lemma 4.

Thus, a solution of the above linear filtering problem is given in a countably additive

framework by using the concept of radonification of the cylinder measures in Abstract

Wiener space.

%%

: -_ ,. , ..... " .{, ., ... ,.,.';%., '. .....................................................-:" .'.:." -. :. -.--............
!
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-..-. Remark that the solution is independent of the renorming operator C by which the

Abstract Wiener space was constructed. It is formally equal to the 'cylinder measurt

solution' and ditTcr6 from it only by its domain of definition, which makes it a

measurable transformatu n from W to H, with respect to p'. Hence, the martingti,.

approach to the Kalman-Buc-. filter in the countablv additive thery, as worked out 11,

[7,1 gives formally the sarme result as the 'cylinder measure filter' in Il. We conclud.

with an argument that shows the significance of the finitely additive filtering the,,r,.

recently worked out by G. Kallianpur and R. L. Karandikar [7,, namely that the spact

H1, of the actual observations has zero probabiltiv with respect to the radnified

observation measure p' in W.

Proposition With the above notations, identifying H, with i( H ,), it holds:

Proof: As is well-known, W is isometrically isomorphic to a closed linear

subspace F of the space C[0,1] of continuous functions on the unit
interval. If this isomorphism is denoted by p:W--.F, and H denotes the

reproducing Kernel Hilbert space generated by the covariance of thei

Gaussian measure v'oqj ', then H, = Tu '(H), according to [6]. If B is the

covariance ofv Oy then xH iff x(rg (B:), due to [3]. Thus v,'(H
V'Oy I (rg(B')) = 0.

The last equality holds analogously to (5).

Eventually, using a result of G. Kallianpur and R.L. Karandikar on
, mixtures of translates of the canonical Gauss measure (cf. [81), we have

pt H.- p C (11-h )p(dh 0
1H

If Z is a white noise in the model AX +Z =Y on an observation Hilbert space H, (often of
smooth functions; for example H, the RKHS of the Brownian motion), this precisely

% Imeans, that the filter solution with respect to the radonifed observation measure ' on

Abstract Wiener space W does not have a practical meaning as long as observations are

considered to be elements of the space H, (cf. [8]), i.e. as long as they appear with zero

probability.

C- Z. . , '" . - " ' ', - . .
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